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Abstract

Observing massive particles exert wave-like behavior has changed our
perspective on the nature elementary particles, and has brought us many
philosophical questions as we try to understand further our universe. We
measured the angle at which electrons formed constructive interference
on a fluorescent screen after being diffracted by carbon crystals. Through
Bragg’s Law we calculated the spacing between the diffracting atoms to
be .37 ± .08nm, this agrees with the accepted distance between carbon
crystal planes of .34nm within error bounds, verifying the wave nature of
electrons just as predicted by De Broglie.

1 Introduction

Wave-particle duality is one of the most fundamental concepts of quantum me-
chanics, which is one of the biggest fields in physics today. Classical theory
describes electrons as point particles. This contradicts the wave behavior of
electrons, which has been experimentally observed. The wave nature of matter
in general has been extremely helpful in fields such as biology, due to the very
short wavelengths of electrons. They are used to reflect off of biological struc-
tures which are so small, that producing a photon with small enough wavelength
to reflect off the structure would require too much energy. This brought us the
invention of the electron microscope, and many more tools that take advantage
of the wave behaviour of matter[1].

In the late 1800’s, J. C. Maxwell calculated the speed of electromagnetic radi-
ation, which was equal to the measured speed of light through experiments, con-
firming that light was an electromagnetic wave.[2] At the end of the 19th century,
Einstein was able to explain the photoelectric phenomenon by describing light
as a discrete flow of particles with each having a corresponding momentum[3].
This contradiction is accepted as “wave-particle duality”, where light behaves
as a particle or as a wave depending on the experiment.[4] In 1924, De Broglie
in his PhD thesis proposed that all massive particles, which were accepted as
point particles, such as electrons, could also behave as waves. He rearranged
Einstein’s momentum of light equation, to obtain a relationship between the mo-
mentum of a particle and its corresponding wavelength [5]. In 1925, Davisson
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& Germer began performing experiments to study the reflection of electrons off
ordinary nickel. After an accident in their experiment, they had to expose their
nickel target to high temperatures. Following this procedure, they noticed the
reflection pattern of the electron had completely changed. They were observing
a constructive interference wave pattern. Later on, it was observed that the
heating of the nickel target caused its atoms to rearrange into a crystal lattice,
which caused electrons to diffract as waves, just as De Broglie theorized in his
thesis. This was the first observation of the wave-nature of massive particles.
[6]

In this experiment, we used an electron beam aimed at a carbon and nickel
target. The electrons then got diffracted on this target and collided with a
fluorescent screen that allowed us to visually study the diffraction pattern. We
then plotted the angle of the outgoing electrons against their momentum, and
from the slope we calculated the distance between two graphite layers.

2 Theoretical Background

As mentioned above, every massive particle has a corresponding wavelength
according to De Broglie. Its wavelength is defined by

λ =
h

p
, (1)

where λ is the wavelength, p is the momentum of the particle and h is Plancks
constant.

The equation defining constructive interference patterns after diffracting a
photon through a crystal gratin is called Bragg’s law and it relates the spacing
between the crystal atoms and the wavelength of the photon as follows

2dsinθ = nλ.[7] (2)

Where d is the spacing between the atoms, theta is the incident angle of the
photon and lambda its wavelength. Since we are considering electrons to be-
have as waves, Bragg’s Law should work just as it does with photons. This
relationship can be derived geometrically as depicted in Figure 1

For the purposes of our experiment, it is useful to substitute λ with equation
1 and solve for sinθ. After doing this we obtain

sinθ =
nh

2p
· 1

d
(3)

From special relativity, we obtain the equation of momentum of a particle
as

p = γmv, (4)

where v is the velocity of the particle, m is its mass and γ is the lorentz factor
equal to 1√

1− v
c
2
.[7]
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Figure 1: The incoming electron sees planes of atoms separated by a distance
d. Constructive interference in path lengths occurs when the difference in path
lengths from scattering by successive planes is equal to an integer times the
electron wavelength. This gives the Bragg condition.[7]
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Figure 2: Apparatus used to create a collimated electron beam by surrounding
the cathode with a metal shield

Our experimental setup lets us set the accelerating voltage on the electron’s
path. This will equal the kinetic energy that the electron will have after it
has traversed it. We can calculate the electron’s velocity through the following
equation

v = c

√
1− (

mc2

Ek +mc2
)2. (5)

Where m is the mass of an electron, c is the speed of light, and Ek is the Kinetic
Energy of the electron, which as mentioned above, is equal to the accelerating
voltage. This is because the unit of electron volts is defined as the energy an
electron obtains after being accelerated through a potential difference.

3 Experimental Procedure

Our setup consisted of an oxide coated cathode which emitted electrons through
thermionic emission. Surrounding the cathode we had a metal shield called the
cathode can as depicted in Figure 2, which helped control the anode current
and create a collimated electron beam. The electrons ejected would travel to
the anode with an energy equal to the voltage difference between these two
plates, connected and controlled by a Teltron Limited London England power
supply. This electric potential was varied between 2.5 - 5 kV in increments of
.5kV. The electrons would then collide with the target which was composed
by a thin film of carbon deposited on a micro mesh nickel grid. Due to the
inconsistency of the grid, which is composed of many tiny crystals in random
orientations, many different patterns may emerge. At the right end of our setup,
there was a fluorescent screen, which would let us observe visually where the
electrons landed after being diffracted by the target.

As we varied the accelerating voltages, we measured the radius of the first
and second rings on the fluorescent screen twice for each setting, and took the
average. This was done by putting tape on the outside surface of the fluorescent
screen, and marking where the rings were located, in order to be able to measure
it with a caliper on a flat surface after to get more accurate measurements.
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Figure 3: Pattern observed on fluorescent screen during the experiment. Radii of
first two rings were measured from two sides and averaged to reduce uncertainty

4 Data Analysis

The pattern observed in the fluorescent screen was a wave diffraction pattern
as shown in Figure 3. We measured the radius of the first ring from the top
and from the bottom and took the average to reduce uncertainty. Since this
pattern was projected into a curved surface, the radii measured represented
some arc length on our glass sphere. To be able to calculate θ from the arc
length measured some trigonometric analysis is needed as depicted in Figure
4. Through this we obtained that θ = arctan( sinα

1+cosα ) where α is the angle
subtended by the radius of the ring.

By knowing the accelerating voltage, which we varied for several measure-
ments we obtain the velocity of the electrons through equation 6, and then its
momentum through equation 5. We then plotted sinθ vs. h

2p , this means that

the slope of the plot represents 1
d which tells us the spacing between the atoms

that diffracted the electron. If we observe Figure 5, which corresponds to the
first ring n = 1, we obtained a spacing equal to .31 ± .13nm. If we observe
Figure 6, we see that this agrees within error bounds with the distance between
two layers of the carbon crystal lattice of d = .34nm.

We then repeated the same procedure with the second ring observed, there-
fore setting n = 2 in Figure 7. This gave us a value of .43±.11 which again agrees
with the accepted value of .34nm within error bounds. Giving us an average
of .371± .085nm. This means that the electrons are hitting in a perpendicular
direction to the carbon crystal planes.
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Figure 4: Trigonometric Analysis of our experiment in order to find θ and be
able to use Equation 4

Figure 5: Plot of the sin of the angle measured on the fluorescent screen against
Planck constant over twice the momentum of the electron. Giving us 1/d as the
slope through a linear fit.
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Figure 6: Accepted values for the dimensions of a carbon crystal lattice, .34nm
being the distance between two different planes. The other two values are
distances between atoms in the same plane

Figure 7: Plot of the sin of the angle measured on the fluorescent screen on the
second ring(n = 2), against Planck constant over twice the momentum of the
electron. Giving us 1/d as the slope through a linear fit.
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4.1 Error Analysis

To measure the arc subtended by the angle α we placed a piece of tape on the
surface of the fluorescent screen, made marks where the ring was located and
its center, and took it off to measure with a caliper on a flat surface. First, we
took into account the thickness of the marked lines on the tape. We measured
the distances from the middle of each marking, therefore making our error for
this half of the thickness of the line on the tape (averaged to ±1.37mm). We
also took into account the error of the caliper ±.005mm to give us a total of
±1.49mm for our arclength which is labeled as “s” in Figure 4. We measured the
radius of the glass sphere by wrapping a string around it, and then measuring
the string with a meter-stick, this yielded an error of ±.5mm. Through error
propagation, we calculated the corresponding error for sinθ, which is dependent
on each different arclength. Finally, for our uncertainty on the lattice spacing
d, we obtained a covariance matrix from our linear fit, which the function that
we used in python from the numpy library provided, and through more error
propagation (finding the inverse of an error) we obtained our errors for d.

5 Conclusion

We aimed an electron beam at a carbon crystal target, which diffracted the
electrons. The electrons were then absorbed by a fluorescent screen where we
could visually observe a wave diffraction pattern. We measured the radii of the
rings formed in this pattern and used Bragg’s Law to calculate the atom spacing
in a carbon crystal. We obtained a value of .371 ± .085nm, this agrees with
the accepted value between carbon crystal planes of .34nm within error bounds.
This verifies the wave nature of matter proposed by De Broglie. This also verifies
that Bragg’s Law, which is typically used for electromagnetic diffraction, is not
any different for massive particles.
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