
Magic State Distillation

Juan Gonzalez De Mendoza

We show how a set of operations consisting of perfect Clifford gates plus access to a family of
states on the Bloch sphere are sufficient for universal quantum computation. We also describe an
algorithm to obtain these states (named ”magic states”) to arbitrary precision by feeding in noisy
ancillas.

I. INTRODUCTION/PREFACE

This paper is meant to summarize in a slightly simpler
manner, the findings of Bravyi and Kitaev in 2004 [1].
We go into more mathematical depth by filling in steps
that the authors skipped, which we considered not to
be trivial. We also are able to describe the algorithm
in more detail by only focusing on T-Type magic states.
Therefore, the reader may take for granted that anything
not cited comes directly from the first reference, in order
to avoid citing every paragraph.

II. COMPUTATIONAL MODEL AND
CLASSICAL SIMULATION

We will start by defining a computational model with
a set of elementary operations O. This set can be decom-
posed into two subsets, one containing error-free opera-
tions called Oideal and a faulty operation Ofaulty.
The set Oideal is composed of the following operations:

• Creating the state |0⟩

• Apply unitary gates from the Clifford group

• Measure the eigenvalues of a Pauli observable

The Clifford gates are assumed to be ideal due to
Gottesman’s work demonstrating how they can be im-
plemented fault tolerantly on stabilizer codes [2]. These
operations are also known to be efficiently simulated on a
classical computer, thanks to the Gottesman-Knill The-
orem. Additionally, simulating a fair coin toss is possible
by using operations from Oideal, for example by creating
a |0⟩ and measuring the Pauli X eigenvalues. These two
statements together imply that tossing of a fair coin may
also be simulated efficiently. These operations allow us
to to apply Clifford gates depending on the outcomes of
the coin, and thus obtain mixed states.

With all of this in mind, we can define a region in
the Bloch sphere which can be efficiently simulated.
This corresponds to the pure states located at the axis
(±1,0,0), (0,±1,0), (0,0,±1)1, and any convex combina-
tion of them. Described as:

1 The Bloch vector representation comes from the fact that any
two dimensional quantum state can be characterized by a vector
a⃗ where ρ = 1

2
(1+ a⃗ · σ⃗)

FIG. 1. An octahedron inscribed in the Bloch sphere which
represents all states having 1-norm less than or equal to 1.

a⃗ = ax(±1, 0, 0) + ay(0,±1, 0) + az(0, 0,±1) =
(±ax,±ay,±az), where ai represent probabilities, which
bounds them as 0 ≤ ai ≤ 1. Thus, the one-norm of our
Bloch vector must be less than one.

|ρx|+|ρy|+|ρz|≤ 1 (1)

If we represent this geometrically, it corresponds to
an octahedron inscribed inside the Bloch Sphere, as de-
picted in 1. Thus, the Gottesman-Knill theorem can
be rephrased as follows: Let there be a quantum state
contained within an octahedron inscribed in the Bloch
sphere whose corners align with the Pauli eigenvectors,
the evolution of said state through a circuit composed of
Clifford gates can be efficiently simulated classically.

III. UNIVERSAL QUANTUM COMPUTATION

The Clifford group is known to not be sufficient for
universal quantum computing. In contrast, the Clifford
group in addition to any other 1-qubit gate not in the
Clifford group has been shown to allow the approxima-
tion of any n-qubit gate to arbitrary precision.
With this in mind, we will now show how to implement

a non-Clifford gate by starting in a state outside of the
octahedron and only applying Clifford gates. Such states
are called ”Magic States”.
Consider the T-Type magic state

|T ⟩ ⟨T | = 1

2
[1+

1√
3
(σx + σy + σz)]. (2)

2

This |T ⟩ state is an eigenstate of the Clifford operator

T = e
iπ
4 SH. Where

T = e
iπ
4

(
1 1
i −i

)
, S =

(
1 0
0 i

)
, H =

1√
2

(
1 1
1 −1

)
.

In the standard basis |T ⟩ = cosβ |0⟩+e iπ
4 sinβ |1⟩ where

cos(2β) = 1√
3

Now Consider the state where we have two particles
in the T state defined above |TT ⟩ = cos2(β) |00⟩ +

e
iπ
4 sin(β)cos(β)[|01⟩ + |10⟩] + e

iπ
2 sin2(β) |11⟩. Then we

measure the ZZ observable, which is equivalent to mea-
suring the parity of the bits. Thus, returning +1 for
even parity, and -1 for odd parity. If the measurement
yields -1, we start again, otherwise our resulting state
is |Ψ⟩ = cos(π

12) |00⟩ + isin(π
12) |11⟩. We then apply a

CNOT01 to the state and discard the second qubit

|Ψ⟩ = cos(
π

12
) |0⟩+ isin(

π

12
) |1⟩ (3)

Finally, we apply a Hadamard gate, and we obtain a
state which we will label as

|A−π/6⟩ =
1√
2
e

iπ
12 (|0⟩+ e−iπ

6 |1⟩) (4)

With this state, we may now apply a non-Clifford gate
to an arbitrary state |ψ⟩ = α |0⟩+ β |1⟩ by implementing
the following algorithm:

1. Prepare the state |Ψθ⟩ = |ψ⟩ ⊗ |A−π/6⟩

2. Measure the observable ZZ, call the outcome z. The
resulting state is |Ψz⟩ = δz,+1(α |00⟩+βei

π
6 |11⟩)+

δz,−1(αe
iπ
6 |01⟩+ β |10⟩)

3. Apply a CNOT with the right qubit as the target
and obtain |Ψz⟩ = δz,+1(α |0⟩ + βei

π
6 |1⟩) ⊗ |0⟩ +

δz,−1(αe
iπ
6 |0⟩+ β |1⟩)⊗ |1⟩

4. Discard the second qubit

Notice that we have now obtained one of two states
depending on the measurement outcome z.

|Ψout⟩ = α |0⟩+ ezi
π
6 β |1⟩ (5)

If we perform this algorithm several times, the phases
will add up on the exponent, with equal probability of
contributing a positive or negative phase. The phase of
the exponent after n iterations will follow a random walk
distribution, which is guaranteed to reach every possible
phase if ran enough times. Thus, with this construction
we can evolve α |0⟩+ β |1⟩ −→ α |0⟩+ ei

π
6 β |1⟩. Which is

equivalent to applying the non-Clifford gate

Λ(π/6) =

(
1 0
0 eiπ/6

)
Thus, with Cliffords and access to a magic state we are

able to implement non-Clifford gates, enabling universal
quantum computation.

IV. THE MAGIC STATE FACTORY

There is plenty of literature describing how to obtain
fault tolerant clifford operations, but in order to perform
the algorithm described above we need access to a source
of perfect magic states. The main idea presented in the
Bravyi and Kitaev paper is a procedure used to obtain
said magic states to arbitrary precision. This procedure
was named “Magic State Distillation” by the authors,
because it takes as input n states, and outputs one state
that is closer to the desired magic state. Below we will
describe the procedure tailored to obtain T-Type magic
states, such that it is compatible with everything dis-
cussed in Section II.
Let us start by defining some notation that will sim-

plify our discussion. We will take as input n identical
copies of some state ρin. We can define our initial error,
or the initial distance between the input and the desired
magic state as

ϵ = 1− ⟨T | ρin |T ⟩ (6)

If we substitute the Bloch vector expression with ρin
we can write the error in terms of the vector components
as such.

ϵ =
1

2
[1− 1√

3
(ρx + ρy + ρz)] (7)

We will also define the eigenvectors of the T gate as
follows

T |T0⟩ = eiπ/3 |T0⟩ , T |T1⟩ = e−iπ/3 |T1⟩ (8)

These can be written as a density operator as follows

|T0,1⟩ ⟨T0,1| =
1

2
[1± 1√

3
(σx + σy + σz)] (9)

We will also be defining the following set of stabilizers
which describe a 5-qubit code which will be used to define
a codespace and syndrome measurements.

S1 = σx ⊗ σz ⊗ σz ⊗ σx ⊗ 1

S2 = 1⊗ σx ⊗ σz ⊗ σz ⊗ σx
S3 = σx ⊗ 1⊗ σx ⊗ σz ⊗ σz
S4 = σz ⊗ σx ⊗ 1⊗ σx ⊗ σz

(10)

Because all of these stabilizers squared are equal to the
identity, their eigenvalues must be -1 and +1. It can also
be shown that the projectors to their eigenvectors can be
described as

|±1(α)⟩ ⟨±1(α)| = 1± Sα

2
(11)

3

Thus, a measuring +1 on all four syndromes would
collapse a state |ψ⟩ to

Π =
1

16
Π4

α=1(1+ Sα) (12)

By definition, the codespace of a set of stabilizers cor-
responds to any state that is an eigenvector of all the
elements of the set, with eigenvalue +1. This implies
that the projector defined above, Π, is a projector onto
the codespace.

A. T-Type Magic State Distillation Algorithm

1. Twirling

With equal probability we either: Do nothing; apply a
T gate; apply a T †. This represents the channel

D(ρ) =
1

3
(ρ+ TρT † + T †ρT) (13)

Let us analyze what we obtain from applying this chan-
nel to our input.

|T0⟩ and |T1⟩ are orthogonal eigenvectors, thus they
form an eigenbasis for H2. If we represent our input in
this basis we obtain

ρ = a |T0⟩ ⟨T0|+ b |T1⟩ ⟨T1|+ c |T0⟩ ⟨T1|+d |T1⟩ ⟨T0| (14)

Substitute this into equation 13, and use the fact that
quantum channels are linear

D(ρ) = aD(|T0⟩ ⟨T0|) + bD(|T1⟩ ⟨T1|)
+cD(|T0⟩ ⟨T1|) + dD(|T1⟩ ⟨T0|)

(15)

Note that

D(|T0⟩ ⟨T1|) = 1
3 [|T0⟩ ⟨T1|

+T |T0⟩ ⟨T1|T † + T † |T0⟩ ⟨T1|T]
(16)

D(|T0⟩ ⟨T1|) = 1
3 [1 + ei2π/3 + e−i2π/3] |T0⟩ ⟨T1|

= 0

∴ D(|T0⟩ ⟨T1|) = 0 = D(|T1⟩ ⟨T0|)

(17)

From this result we conclude that only the diagonal terms
are non-zero after applying the quantum channel. Now
we utilize the error symbol ϵ we defined to describe our
state as

D(ρ) = (1− ϵ) |T0⟩ ⟨T0|+ ϵ |T1⟩ ⟨T1| (18)

At this point we have obtained a probabilistic mixture
of the magic state we want, and a pure state in an orthog-
onal direction. We repeat this procedure with a total of
5 states from the initial n copies.

FIG. 2. Example of the application of the distillation scheme
recursively, starting with 25 copies of a state with error ϵ.
These are separated into groups of 5 and each group is dis-
tilled separately. Then, the output of each group is grouped
together and distilled again. If the initial error is below the
accepted threshold (ϵ < ϵ0) then we expect ϵ < ϵ′ < ϵout[3]

2. Syndrome Measurements

The combined state of the 5 qubits can be described
as

ρinput = ρ⊗5 =
∑

ϵ|x|(1− ϵ)5−|x| |Tx⟩ ⟨Tx| (19)

Where x represents a 5 bit string, such that

|Tx⟩ = |Tx1⟩ ⊗ |Tx2⟩ ⊗ |Tx3⟩ ⊗ |Tx4⟩ ⊗ |Tx5⟩ , (20)

and the sum goes over all possible values of x.
We will now claim that if σα = σ⊗5

α , then T = T⊗5.
To prove this, first notice that the relationship between
these operators are

TσxT
† = σz, TσyT

† = σx, TσzT
† = σy (21)

From this one can calculate the commutator and find
that [Π, T] = 0. From equation 8, we can conclude that
applying a logical T operator onto |Tx⟩ will result in the
same vector but multiplied by eiπ/3 for every 0 in x, and
multiplied by e−iπ/3 for every 1 in x. Thus we define the
hamming weight of x as |x|, which by definition contains
the number of 1’s in x. On the other hand, because x
contains 5 bits, |x| - 5 is equal to the number of 0’s in x.
Using this we obtain

T |Tx⟩ = e−i|x|π/3ei(5−|x|)π/3 |Tx⟩ = eiπ(5−2|x|)/3 |Tx⟩
(22)

Let us now consider a state

4

|Φ⟩ =
√
6Π |T00000⟩ (23)

In the appendix of [1], they show the magnitude of this
vector to be non-zero. Thus, |Φ⟩ lies in our codespace.
By using eq. 22 and the fact that [Π, T] = 0, we obtain

T̂ |Φ⟩ =
√
6T̂Π |T00000⟩ =

√
6ΠT̂ |T00000⟩

= e5iπ/3Π |T00000⟩ = e−iπ/3Π |T00000⟩ = e−iπ/3 |Φ⟩ (24)

There are two important things to notice from this
equation. First, is that when we apply T̂ to |Φ⟩ we obtain
a vector proportional to |Φ⟩. Thus showing that |Φ⟩ is an
eigenvector of T̂ . Second, the eigenvalue is the same as
|T1⟩’s eigenvector in eq. 8. From this we conclude that
|Φ⟩ is equivalent to the logical |T1⟩ vector

|TL
1 ⟩ =

√
6Π |T00000⟩ (25)

Similarly

|TL
0 ⟩ =

√
6Π |T11111⟩ (26)

By following the same procedure and using the fact
that our codespace can only have two eigenvalues due to
its dimensions, Kitaev and Bravyi computed the projec-
tions of all |Tx⟩ which were summarized in the following
piecewise defined equation

T̂ |Tx⟩ =

6−1/2 |TL
1 ⟩ if |x| = 0,

0 if |x| = 1,
(5/6)−1/2 |TL

0 ⟩ if |x| = 2,
(5/6)−1/2 |TL

1 ⟩ if |x| = 3,
0 if |x| = 4,
6−1/2 |TL

0 ⟩ if |x| = 5,

(27)

With this, we have the necessary mathematical rela-
tionships to describe states in terms of our codespace.
The next step in our algorithm is to measure the sta-

bilizers. If any of the four eigenvalues is -1, we discard
our 5 copies and start over. On the other hand, if we
measure (1,1,1,1), the resulting state will be a projection
onto the codespace.

ρcs = ΠρinputΠ (28)

ρcs =
∑
x

ϵ|x|(1− ϵ)5−|x|Π |Tx⟩ ⟨Tx|Π (29)

Plug in the projected operators described in eq.27

ρcs = [ϵ
5+5ϵ2(1−ϵ)3

6] |TL
0 ⟩ ⟨TL

0 |
+[(1−ϵ)5+5ϵ3(1−ϵ)2

6] |TL
1 ⟩ ⟨TL

1 |
(30)

If we normalize the state we obtain

ρ
′

cs = [ϵ
5+5ϵ2(1−ϵ)3

a] |TL
0 ⟩ ⟨TL

0 |
+[(1−ϵ)5+5ϵ3(1−ϵ)2

a] |TL
1 ⟩ ⟨TL

1 |
(31)

where a = ϵ5 + 5ϵ2(1− ϵ)3 + (1− ϵ)5 + 5ϵ3(1− ϵ)2

3. Decode

Finally, we take our state out of the codespace by de-
coding it. The stabilizer framework guarantees the exis-
tence of a mapping V such that

V |ψ⟩ = |ψ⟩ ⊗ |0, 0, 0, 0⟩ (32)

Where |ψ⟩ is any codeword in the codespace stabilized
by 10.
Apply this to our output state

V ρ
′

csV
† = [ϵ

5+5ϵ2(1−ϵ)3

a] |T0⟩ ⟨T0|
+[(1−ϵ)5+5ϵ3(1−ϵ)2

a] |T1⟩ ⟨T1|
(33)

Observe that this state is closer to |T1⟩, while we are
trying to distill T0. We now apply σyH, which effectively
flips |T0⟩ −→ |T1⟩
We have effectively finished the distillation algorithm.

Therefore whatever probability accompanies the state
|T0⟩ corresponds to 1− ϵout

ϵout =
ϵ5 + 5ϵ2(1− ϵ)3

ϵ5 + 5ϵ2(1− ϵ)3 + (1− ϵ)5 + 5ϵ3(1− ϵ)2
(34)

It is important to point out that the output error is
not necessarily smaller than the input error. Trivially,
in order for this algorithm to be of any use, we must
obtain a smaller error than we started with (ϵout ≤ ϵ).
We obtain the lower bound by setting ϵout(ϵ0) = ϵ0, and
find that there is only one solution to this equation at
ϵ0 ≈ .173. Giving an error threshold which our n copies
must lie below in order for the distillation scheme to be
successful. Otherwise, the state becomes closer to the
maximally mixed state after distillation.
This algorithm can be recursively implemented as

shown in 2 to achieve arbitrary precision, given that the
initial input error is below the threshold (ϵ < ϵ0). To
find the error after k layers of distillation subroutines,
one must plug in the output error given in eq. 34 as
input error. By doing this we find that

ϵout ≈
1

5
(5ϵ)2

k

(35)

5

FIG. 3. A Bloch Sphere is depicted with a pink plane, which
represents the plane where the positive octant octahedron’s
face lies. States below this pink plane within the sphere can
be efficiently simulated. Depicted by a blue ring is the family
of states which have an error of ϵ0, any state located above
the ring will yield a successful distillation procedure if fed as
input. This results in a slim slice of the sphere in which the
states cannot be efficiently simulated, nor are they useful to
achieve UQC.[3]

V. CONVERGENCE ANALYSIS

A reasonable question to ask would be; if we are given
some ρ, and we only apply operations fromOideal, is there
always a strategy to obtain an initial error below the
threshold such that our distillation procedure converges?

To answer this, one may consider an input state that
lies within the octahedron shown in Fig. 1. The G-K
theorem allows us to move the state anywhere within the
octahedron with these operations. The closest point to
the T magic state (1√

3
, 1√

3
, 1√

3
) is the mixed state on the

face of the octahedron which is lying on the same axis
(13 ,

1
3 ,

1
3). By using Eq. 7 we obtain ϵ ≈ .21, giving us

an error higher than the threshold. This is an important
observation, the computational model proposed in this
paper is not sufficient for universal quantum computa-
tion for any noisy ancilla given. Furthermore, there is
a significant gap between the states for which universal
quantum computation is possible (states with error less
than ϵ0), and states that can be efficiently simulated.
This gap is depicted in Fig. 3

VI. ERROR ANALYSIS AND LATER
DEVELOPMENTS

The scheme proposed in this paper, is considered too
costly in resources by many. Although it converges to an
output error of 0 at an exponential rate, it also requires
an exponential amount of qubits to do so. Asides from
this, it is not guaranteed to succeed. As mentioned in
the section 3.A.II, if any of the measurement outcomes
results in -1, the 5 copies are thrown away. On average,
1 out of 30 distillation subroutines succeed. Making this
a very wasteful procedure.
Kitaev and Bravyi conclude by saying there may be

better distillation algorithms, with lower ϵ0, they even
speculate the possibility of an algorithm able to obtain
an ϵ0 immediately outside the octahedron.

Since then, there have been many developments to this
idea. In 2019, Litinski , proposed a modified scheme in
which they reduced the previous best known space-time
cost by 90%.[4] Magic state distillation is still considered
one of the best contenders for building a fault-tolerant
quantum computer. The field is still relatively new, and
further developments are still expected to occur in the
future.

[1] Sergey Bravyi and Alexei Kitaev, “Universal quantum
computation with ideal clifford gates and noisy an-
cillas,” Physical Review A 71 (2005), 10.1103/phys-
reva.71.022316.

[2] Daniel Gottesman, “Theory of fault-tolerant quantum
computation,” Physical Review A 57, 127–137 (1998).

[3] J. G. Mendoza, Original figure.
[4] Daniel Litinski, “Magic state distillation: Not as costly as

you think,” Quantum 3, 205 (2019).

http://dx.doi.org/10.1103/physreva.71.022316
http://dx.doi.org/10.1103/physreva.71.022316
http://dx.doi.org/ 10.1103/physreva.57.127
http://dx.doi.org/ 10.22331/q-2019-12-02-205

	Magic State Distillation
	Abstract
	Introduction/Preface
	Computational model and Classical Simulation
	Universal Quantum Computation
	The Magic State Factory
	T-Type Magic State Distillation Algorithm
	Twirling
	Syndrome Measurements
	Decode

	Convergence Analysis
	Error Analysis and Later Developments
	References

